

ENGAGE™ 11567

The Dow Chemical Company - Polyolefin Elastomer

Tuesday, November 5, 2019

General Information

Product Description

ENGAGE™ 11567 is a polyolefin elastomer offering excellent rubber loading efficiency for superior impact modification in thermoplastic polyolefin (TPO) compounds. Its improved toughening efficiency compared to other commercially available polyolefin elastomers allows for greater ease in optimizing elastomer levels to meet impact resistant requirements in global automotive specifications. TPO formulations containing ENGAGE 11567 combine good processing behavior with an excellent stiffness/toughness balance for automotive parts, such as bumper fascia. The design of the ENGAGE 11567 polyolefin elastomer enables shortening the injection molding cycle time for the TPO compound. Its design contribute to morphology control and improved temperature resistance for final parts.

Main Characteristics:

- High rubber loading efficiency for optimum cost/performance balance
- Improved toughness for better stiffness/toughness balance
- Good flow characteristics
- Demonstrated improved cycle time
- High melting point for improved temperature resistance
- Pellet form with partitioning agent for ease of handling

Applications:

- Impact Modification of TPO
- Injection molded polyolefin compounds

General

Material Status	• Commercial: Active		
Availability	• Asia Pacific	• Latin America	• North America
Forms	• Pellets		

ASTM & ISO Properties ¹

Physical	Nominal Value	Unit	Test Method
Density / Specific Gravity	0.868		ASTM D792
Melt Mass-Flow Rate (190°C/2.16 kg)	1.0	g/10 min	ASTM D1238
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus - 100% Secant (Compression Molded)	232	psi	ASTM D638
Tensile Strength (Break, Compression Molded)	739	psi	ASTM D638
Tensile Elongation (Break, Compression Molded)	600	%	ASTM D638
Hardness	Nominal Value	Unit	Test Method
Durometer Hardness			ASTM D2240
Shore A, 1 sec, Compression Molded	60		
Thermal	Nominal Value	Unit	Test Method
Glass Transition Temperature	-79.6	°F	Internal Method
Melting Temperature (DSC)	250	°F	Internal Method

Notes

¹ Typical properties: these are not to be construed as specifications.

UL and the UL logo are trademarks of UL LLC © 2019. All Rights Reserved.

The information presented here was acquired by UL from the producer of the product or material or original information provider. However, UL assumes no responsibility or liability for the accuracy of the information contained on this website and strongly encourages that upon final product or material selection information is validated with the manufacturer. This website provides links to other websites owned by third parties. The content of such third party sites is not within our control, and we cannot and will not take responsibility for the information or content.